Email Document Reference

Enter your email address below and the reference for this document will be sent to shortly from webmaster@ceesi.com.

Title: Design, Operation And Maintenance Of Lact Units
Author: James King
Source: 2004 International School of Hydrocarbon Measurement
Year Published: 2004
Abstract: This paper presents an overview of the design, operation and maintenance of Lease Automatic Custody Transfer (LACT) units. These units are used for the automatic unattended measurement of quantity and quality of crude oil and sometimes other wellhead liquids when transferred from a producer to a pipeline for the account of a purchaser or consignee. This transfer usually takes place at a production lease site, hence, the use of Lease in the name. This can be on land or offshore delivering into pipelines, barges, or tanker loading and offloading operations. Similar units used to measure the transfer of other liquids or liquids between pipelines are often called ACT units since they usually are not associated with a crude oil production lease. LACT units can range from small single meter, low pressure systems with portable proving connections to high-pressure systems with multiple meters and an on-site dedicated meter prover. Multiple smaller meters in parallel, instead of a single large meter, permit a larger range of permissible flow rates and reduces the prover size. Additionally, if one meter run fails, the LACT Unit can still operate at a somewhat lower capacity. LACT unit configurations vary considerably, but most units contain the basic equipment described here. More detail can be found in the American Petroleum Institute Manual of Petroleum Measurement Standards (API MPMS) Chapters 5, 6, 7, 8, 9, and 10. To ensure correct measurement of a petroleum liquid, the Lease Automatic Custody Transfer (LACT) equipment just be properly designed, operated and maintained.




In order to prevent spam and automated file downloads for documents within the Measurement Library, please follow the instructions below and then you will be able to email a reference to this article.





Copyright © 2025